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Abstract. Synchronization is an important topic in theoretical computer science, and it is also
important in the theory of finite state automata. Deterministic finite state automata that are
synchronizing are interesting examples of error resilient systems: if a synchronizing automaton
is taken out of control, it can be reset to a specific state by feeding it with a synchronizing
string.The study of minimal synchronizing strings is an old topic of Automata Theory and the
classical Černý conjecture refers to it. The later conjecture states that the minimal reset length
of any n- state synchronizing automata is bounded above by (n− 1)2. This work is an attempt
to understand the main questions behind Černý conjecture. We study the synchronizing time
of triples. We conjecture that the time to synchronizing triples is bounded above 2

3
n2. We call

this conjecture 2
3

- Černý conjecture. We discuss the meaning and relevance of our conjecture
and we study the case of eulerian automata and get some partial results.

1. Introduction
The concept of synchronizing automata appears for the first time in the work of Moore [1].
A finite state automaton is an elementary model of devices that work in discrete time, such as
computers or relay control systems . This leads to a natural question: is it possible to restore the
control of such device, if the current state is not known, but the outputs produced by the device
can be observed under several actions? Moore proved that under certain conditions it is possible
to determine the state to which the automaton will arrive after an adequate sequence of actions
called experiments. The Gedanken-experiments of Moore motivated the study of synchronizing
automata which is nowadays, an active research field. The recent review of Sandberg [2] is a
good reference in the area.
The study of automation processes has been an important area of research in Colombia.
Research and development of automation processes is a vital factor in the development of the
manufacturing sector [3]. The university Francisco de Paula Santander Ocaña has been a pioneer
in the study of automation in the Norte del Santander department [4].
Jan Černý [5] published his first paper on automata synchronization in 1964. He presented in
this paper a sequence that we denote with the symbol {Cn}n≥2. Automaton Cn is a n−state
automaton that can be synchronized by a word of length (n−1)2. Černý conjectured, that every
synchronizing automaton has a synchronizing word whose length is upperbounded by (n− 1)2 .
This conjecture is considered as the most important open problem in the combinatorial theory
of finite automata [6] .
A first attempt to solve the Černý problem consists in reduce its proof to a small and
representative enough class of automata. Volkov [7] proved the following result in that direction:



Suppose that Černý conjecture holds for all complete automata with a strongly connected
transition graph. Then the conjecture holds for all complete automata, both strongly connected
and otherwise.
The above result motivated the study of different classes of automata for which Černý conjecture
holds true. Let us list some of the most important results in this direction.
1. Circular automata: an automaton is circular if there exists a letter a ∈ Σ that induces
a circular permutation over the set of states of the automaton. Pin [8] proved that Černý
conjecture holds true for circular automata with a prime number of states. This result was
improved by Dubuc [9], who proved the conjecture for all circular automata.
2. Aperiodic automata: an automaton is aperiodic, if and only if, its transition semigroup is
aperiodic. Trahtman [10] proved that Černý conjecture holds true for aperiodic automata.
3. One-cluster automaton: an automaton is a one-cluster automaton if there exits a ∈ Σ
such that the graph of a is connected. Steinberg [11] proved that Černý conjecture holds true for
all the one-cluster automata for which the length of the one-cluster cycle is a prime number. An
important application of synchronizing automata is related to code synchronization. Béal [12]
proved that the fast synchronization of codes is related to the fast synchronization of one-cluster
automata.
4. Eulerian automata: an automaton is Eulerian if the associated transition digraph is
Eulerian. Kari proved that Eulerian automata are synchronizing, and he also proved that Černý
conjecture holds true for this class of automata. Steinberg [13] proved how to deduce Kari’s
solution by a method for obtaining bounds on lengths of synchronizing words.
We consider that the above four classes constitute the most representative example of classes of
automata for which it has been proved that Černý Conjecture holds true.
What is know about general automata ?
The first upper bound for general automata was proved by Černý who proved that the length of
the shortest reset word not exceed the value 2n − n− 1. This result has been improved several
times. Pirická and Rosenauerová proved in 1971 a better upper bound, they proved that the
reset length is upperbounded by 1

3n
3 − 3

2n
2 + 25

6 − 4. Pin established a better bound in 1981,

namely (1
2 −

π
36)n3 + o(n3). Then, in 1982, Pin [14] and Frankl [15] found a better bound n3−n

6 .
Quite recently, in 2018, Szykula improved this bound achieving the best current upper bound:
114
685n

3 +O(n2).

The Automata with reset word close to the Černý bound are very rare [16]. Then, it is natural
to ask:
1. Are synchronizing automata frequent?
2. Does a synchronizing n-state automaton have a short synchronizing word with high
probability?
Berlinkov [17] proved that the probability that a random n-state automaton is synchronizing is

of the order O(1− n−
1
2
|Σ|). Nicaud [18] proved that when an automaton is chosen uniformly at

random, the probability that it has a synchronizing word of length O(n1+ε) tends to 1 when n
tends to infinity. Thus, it seems that most automata are synchronizing and can be synchronized
with short reset words. Why are we interested in the existence of short synchronizing strings?
Suppose one has to control a synchronizing automaton, it should include a reset word into his
toolkit: if the system is taken out of control, it can use this reset word to drive the system
towards a specific state that can be computed in advance. Notice that by doing so, the reset
time will depend on the length of the reset word. Then, it is better if he chooses to compute a
shortest synchronizing string.
Finally, it is important to remark that automata synchronization is not an isolated field, and
that it has many application in other fields of applied computer science. One of the oldest
and most surprising application is related to the setting of mechanical pieces ( Natarajan [19]).
There are applications related to coding (Berlinkov [12]), game theory (Maubert [20]) and matrix



mortality (Jungers [21]). Moreover, we have that automata synchronization is a special instance
of the Rendezvous problem studied in distributed computing (Rajsbaum [22]).
Organization of the work, contributions and relations to previous work. This work is
organized into four sections. In section 1 we introduce the main notions of subset synchronization
and we state our main conjectures.In section 2 we focus on the synchronizing times of triples,
and we begin the study of The 2

3 -Černý Conjecture. The latter conjecture states that given a
n-state synchronizing automaton, the synchronizing time of its hardest to synchronize triples of
states is bounded above by 2

3n
2 + o

(
n2
)
. In section 3 we study the case of Eulerian automata,

we prove that a weak version of the conjecture holds true for almost all the Eulerian automata,
and we finish this section with some concluding remarks that are related to planar Eulerian
automata.

2. Subset synchronization
Let us recall the notion of deterministic finite state automaton.

Definition 1. A DFA is a triple M = (QM,ΣM,δM) such that:

• QM is a finite set, the set of internal states of automaton M.

• ΣM is a finite alphabet, the input alphabet of M.

• δM is the transition function of M, which is a function from QM × ΣM to QM.

Definition 2. Let M = (QM,ΣM,δM) be a DFA. We denote by Σ∗M the set of finite strings

over the alphabet ΣM. The function δ̂M : QM × Σ∗M → QM, defined by the recursion:

δ̂M (q, w1...wn) = δM

(
δ̂M (q, w1...wn−1) , wn

)
,

δ̂M (q, w1) = δM(q, w1).

Function δ̂M determines the state that is reached when automaton scans the string w1...wn,
beginning in the state q.

Definition 3. We say that an automaton M is synchronizing, if and only if, there exists a

synchronizing string w ∈ Σ∗M, such that for all p, q ∈ QM, the equality δ̂M (p, w) = δ̂M (q, w)
holds.

of k agents is exploring an automaton M. Suppose also that one wants to force all those
agents to meet at a certain unspecified state. Then, if one can broadcast a single message, the
same one for the k agents, he must choose to broadcast a string that synchronizes the locations
(states) of those agents. We can consider two possible scenarios. In the first scenario one does
not know the specific locations of the agents scattered through the territory, while in the second
scenario he knows those k locations. The first scenario is equivalent to the classical Černý’s
scenario because the only possible solution is to synchronize all the states of M. The second
one corresponds to subset synchronization, it corresponds to synchronizing the k locations of
the agents.

Definition 4. Let M be a synchronizing automaton and let q1, q2, ..., qk ∈ QM.

• We use the symbol st (M, q1, q2, ..., qk) to denote the length of a minimal synchronizing
string for those k states.

• We use the symbol stk (M) to denote the quantity

max {st (M, q1, q2, ..., qk) : q1, q2, ..., qk ∈ QM} ,

which is equal to the synchronizing time required by the hardest to synchronize k-tuple of
states of automaton M. We say that stk (M) is the k-tuple rendezvous time of M.



• We use the symbol stk to denote the function defined by

stk (n) = max {stk (M) :M is a n-state synchronizing automaton} ,

which we call the k-tuple rendezvous time function.

By an abuse of language we say that st (M, q1, q2, ..., qk) is the synchronizing time of the
tuple {q1, q2, ..., qk} .
We study the sequence {stk}k≥2 . We focus on the function RT : N→ R that is defined by

RT (k) =

{
0, if k = 0, 1

limn→∞
stk(n)
n2 , otherwise

3. Eulerian automata
The references [23], [24] y [25] make a detailed study of the 2

3 -conjecture for the cases of circular
automata and one cluster automata.In this section we discuss the remaining result, that is: we
discuss some facts that are related to the 3-tuple rendezvous time of Eulerian automata.

Definition 5. An automaton M is said to be Eulerian, if and only if, the transition digraph of
M is Eulerian (parallel edges are not allowed).

Kari proved that Černý Conjecture holds true for Eulerian automata [26], he proved that
(n− 2) (n− 1) + 1 is an upper bound on the synchronizing time of those automata. It is clear

that Kari’s upper bound is not strong enough as to imply that 2n2

3 + o (n) is an upper bound

on the triple rendezvous time of Eulerian automata. Can we prove that the 2
3 -Černý Conjecture

holds true for Eulerian automata?. Let C be a class of synchronizing automata. We know that
RT C (3) ≤ 1. Suppose we prove that RT C (3) ≤ 1− ε. If ε ≥ 1

3 we get that RT C (3) ≤ 2
3 and we

get that the 2
3 -Černý Conjecture holds true for the class C. If 0 < ε < 1

3 we get a weaker but
highly nontrivial result. In this section we prove a weak result concerning the 3-tuple rendezvous
time of Eulerian automata.We prove that if p is prime, then it is almost sure that for all ε > 0
the quantity (3

4 + ε)p2 is an upper bound on the triple rendezvous time of p-state Eulerian
automata.
It is known that the expected synchronizing time of n-state synchronizing automata is O (n) [17].
The latter fact implies that Černý upper bound holds true with probability one. It also implies

that the 2n2

3 upper bound on the 3-tuple rendezvous time holds with probability one. However,
we have to notice that the set of Eulerian automata is a set of probability zero. Thus, the
aforementioned probabilistic result does not have implications on the expected synchronizing
time and the expected 3-tuple rendezvous time of Eulerian automata. If we want to prove
probabilistic results for Eulerian automata we have to prove them from scratch.
We would like to prove (at least) that The 2

3 -Cerný Conjecture holds true for Eulerian automata
with a high probability. We use some of the previous facts and ideas to get a weaker result. Our
strategy reduces to show that given ε > 0, given p prime and given a p-state Eulerian automaton
M the inequality αM ≥ p

4 − ε holds with a high probability.
We have to show as well that the probability of G being synchronizing goes to one when p goes
to infinity.

Remark 1. From now on, and for the ease of computations, we focus on the binary case.

3.1. RT p-E (3) ≤ 3
4 holds with probability one.

Let G be an Eulerian digraph with p nodes and suppose that for all v the equalities

deg+
G (v) = deg−G (v) = 2



hold. We say in the later case that G is an Eulerian frame. A road coloring of G corresponds
to assign a color a or b to each one of the edges in G, the assignment must satisfy the following
constraint: given a node v, its two outgoing edges are assigned different colors. Notice that if
we choose a road coloring of G, say c, we are simply choosing one of the Eulerian automata that
can be constructed over the fixed topology determined by frame G. We use the symbol Gc to
denote the latter automaton.

We say that a road coloring c is synchronizing, if and only if, automaton Gc is synchronizing.
Kari proved that given an Eulerian frame, there exists a road coloring of it that is synchronizing
[26].

We suppose that the set of nodes of G is the set {1, ..., p}. Notice that it is easy to choose
road colorings of G uniformly at random, it can be made in the following way:

• Let v ∈ {1, ..., p} be a node, and let (v, i) and (v, j) be the two edges going out from v.
Suppose that i < j and set v1 = i and v2 = j. Choose uniformly at random a bijection
fv : {1, 2} → {a, b} . Given i = 1, 2, assign to edge (v, vi) the color f (i) . Choose the
functions {fv : v ∈ {1, ..., p}} in an independent way.

Let us fix a frame G with p nodes, and let rc (G) be the set of road colorings of G. We set:

(i) βG = Prc∈Urc(G) [Gc is synchronizing] .

(ii) γG (ε) = Prc∈Urc(G)

[
αGc ≥ p

4 − ε
]

We fix ε > 0, we want to prove that there exist two functions r, sε : N→ N such that:

(i) βG ≥ 1− r (p).

(ii) γG (ε) ≥ 1− sε (p) .

(iii) limp→∞ (r (p)) = limp→∞ (sε (p)) = 0.

The analysis of γG (ε) is fairly easy. Let w ∈ {1, ..., p} and let (i, w),(j, w) be the two edges
going into w. Notice that the colors of those two edges were chosen in an independent way.
Moreover, we have that

Prc [c (i, w) = a] = Prc [c (i, w) = b] = 1
2 .

Then, we have that

Prc [c (i, w) = c (j, w) = a] = Prc [c (i, w) = c (j, w) = b] = 1
4 ,

and it implies that the expected dimensions of RGca and RG
c

b are both equal to p
4 . It follows easily

that there exists a function sε (n) such that.(
Prc

[
αGc ≥ p

4 − ε
])
≥ 1− sε (p) and limp→∞ (sε (p)) = 0.

The remaining task is a little bit more demanding.
Let c be a road coloring of G, we say that A ⊂ Q is a synchronizing subset of Gc, if and only

if, there exists a string w such that the equality

|δGc (A,w)| = 1

holds. We use the symbol mGc to denote the size of the largest synchronizing subsets of Gc, that
is:

mGc = max {k : there exists a synchronizing subset A such that |A| ≥ k} .
Notice that Gc is synchronizing, if and only if, the equality mGc = p holds. Thus, we want to

prove that there exists a function r : N→ N such that

Prc [mGc = p] ≥ 1− r (p) and limn→∞ r (p) = 0.



Lemma 1. For all prime p and for all Eulerian frame G of size p the equality

Prc [mGc = n] = Prc [mGc ≥ 2]

holds.

Proof. Kari’s proved that for all road coloring c the number mGc divides p. Recall that p is
prime, then we have that the equality mGc = p holds, if and only if, mGc ≥ 2. The equality

Prc [mGc = n] = Prc [mGc ≥ 2]

follows easily from the latter fact.

Lemma 2. Prc [mGc ≥ 2] ≥ 1− 2−p

Proof. Let s be a node, and let (q, s) , (r, s) be its two ingoing edges. If those two edges are
assigned the same color, then mGc ≥ 2. Thus, we have that Prc [mGc ≥ 2] is lowerbounded by
the probability that there exists a node s whose two ingoing edges are assigned the same color,
we use the symbol α (p) to denote this probability. If we fix s, the probability of not assigning
the same colors to its ingoing edges is 1

2 . It implies that α (p) ≥ 1− 2−p. Thus, we have that

Prc [mGc ≥ 2] ≥ α (p) ≥ 1− 2−p,

and the lemma is proved.

Given the above series of lemmata we can conclude that

Theorem 1. Let Σ be an alphabet such that |Σ| ≥ 2, let ε > 0 and let p be a prime
number. Suppose that one chooses uniformly at random a p-state Eulerian automaton without
parallel edges over the alphabet Σ. Let P (p, ε) be the probability that the chosen automaton
is synchronizing and that all its triples can be synchronized in time

(
3
4 + ε

)
p2. We have that

limp→∞ P (p, ε) = 1.

We can conclude, from the above theorem, that the inequality RT p-E (3) ≤ 3
4 holds with

probability one.

4. Conclusion
We are strongly convinced that the planarity constraint makes the problem become more
tractable. One has to take into account that the class of planar digraphs is one of the most
studied and best understood classes of digraphs (the class of planar digraphs is a very much
more docile class than the class of strongly connected digraphs). We think that there are specific
ways of proving Černý conjecture for planar automata (supposing it is true) that does not work
for general automata. We would have liked to illustrate the latter point by proving the 2

3 -Černý
conjecture for planar automata. Unfortunately, we could not prove this result. There is a way of
illustrating our point in a very much weaker way: we conjecture that RT E (3) ≤ 2

3 . A possible
attack to the latter conjecture is given by:

(i) Prove that the inequality RT P (E) (3) ≤ 2
3 implies the inequality RT E (3) ≤ 2

3 , where P (E)
is the class of planar Eulerian synchronizing automata.

(ii) Prove the inequality RT P (E) (3) ≤ 2
3 .

We would like to observe that, in this special case, the planarity hypothesis makes the problem
more tractable. The class of planar Eulerian digraphs (also called planar Eulerian maps) is a
docile class. Thus it would be interesting to prove that RT P (E) (3) ≤ 2

3 , using an argument
strongly based on the planarity of the automata to be analyzed.
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[10] Trakhtman A 2007 The Černý Conjecture for Aperiodic Automata D M & T Computer Science 9(2) 11-27
[11] Steinberg B 2008 The Černý conjecture for one-cluster automata with prime length cycle Theor. Comput.

Sci 412(39) 5487-5491
[12] Beal M, Berlinkov M, Perrin D 2011 A Quadratic Upper Bound on the Size of a Synchronizing Word in

One-Cluster Automata. Int. J. Found. Comput. Sci. 22(2) 277-288
[13] Steinberg B The averaging trick and the Černý conjecture ( arXiv:0910.0410)
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