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Abstract: Abstract: This paper presents a systems identification method, for discrete time 
linear systems, based on an evolutionary approach, which allows achieving the selection 
of a suitable structure and the parameters estimation, using non conventional objective 
functions. This algorithm incorporates parametric crossover and parametric mutation 
along a weighted gradient direction (Tang and Wang, 1997). The performance of the 
proposed method is illustrated with computer simulations using ARX model structures, 
where parameters, model dynamical order and input-output delay values are estimated 

 
Resumen: En este trabajo se presenta un algoritmo para identificación lineal de sistemas 
en tiempo discreto, basado en un enfoque evolutivo, el cual permite llevar a cabo la 
selección de una estructura apropiada basada en modelos tipo ARX y de la estimación de 
los parámetros, orden dinámico y retardo entrada/salida del sistema,  utilizando funciones 
objetivos no convencionales. Este algoritmo incorpora operadores de cruce paramétrico y 
mutación paramétrica utilizando ascenso por gradiente (Tang and Wang, 1997). La 
eficiencia del algoritmo evolutivo propuesto es ilustrada a través de simulaciones 
computacionales.. 
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1. INTRODUCTION 
 

The identification of a dynamic process from a set 
of possibly noisy input-output data has been a 
classical problem in control engineering. System 
parametric identification is usually achieved in two 
steps: the first step is selecting a model family from 

which a candidate model is produced by 
minimizing some error criterion. The second step is 
validating the identified candidate model in terms 
of verifying some performance indicators, such as 
noise independence, error auto-correlation, 
input/error correlation and real response following 
among others. If results do not satisfy some of the 
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performance indicators, an alternative model must 
be produced over a diferent model family. Least 
square methods have been traditionally used, for 
achieving parametric estimation, in systems 
identification due to their computational eficiency. 
Least square methods properties have been well 
analyzed by many authors, numerical procedures 
have been proposed for individual applications and 
modification from basic method have been 
performed according to specific requirements 
(Strejc, 1980). On the other hand, evolutionary 
approaches for system identification have been used 
in recent years, for making error criteria more 
exible and for improving performance of system 
identification process in parameters estimation. The 
evolutionary method proposed allows the 
parametric estimation process using non 
conventional error criteria for linear systems and 
the calculation of optimal system order and system 
time delay, while minimizing the time involved in 
the validation step. The eficiency of the 
evolutionary method is illustrated by computer 
simulation results. 
 
 

2. EVOLUTIONARY COMPUTATION 
 

Evolutionary Computation methods are associated 
to computational models which use some 
mechanism related to the Evolution Theory and 
intended to the design and implementation of a 
variety of systems applications (Williams, 1966; 
Bäck and Schwefel, 1993; Fogel, 1995; Golberg, 
1996; Pérez, n.d.; Bäck et al., 1997; Fogel, 1998; 
Heitkotter and Beasley, 1998). The most important 
evolutionary computation contribution to problems 
solving methodology, has been the use of selection 
mechanisms of potential solutions and the 
construction of new candidates using characteristics 
from the recombination of existent individuals, 
similar to the organisms in natural evolution (Mayr, 
1963; Rosen, 1967; Darwin, 1972; Stern, 1973; 
Lewontin, 1974; Darwin, 1985; Ridley, 1989; 
Futuyma, 1986; Maynard and Smith, 1989). The 
main objective associated to these techniques is to 
take advantage from some generic ideas behind 
evolutionary processes, in order to solve search and 
learning complex problems. Concrete 
implementations in the evolutionary computation 
area have been called Evolutionary Algorithms 
(Fogel, 1995; Fogel, 1998; Golberg, 1996; Bäck et 
al., 1997; Heitkotter and Beasley, 1998; Pérez, 
n.d.). The generic purpose of these algorithms is to 
guide a stochastic search, making evolve a set of 

structures and selecting iteratively the _ttest of 
them. All these algorithms are characterized by 
their simplicity from the biological point of view, 
but at the same time are complex enough to provide 
robust and powerful search mechanisms. (Aguilar 
and Echeverría, 2001). 
In Evolutionary Computation it is possible to 
distinguish five paradigms: (Fogel, 1995; Fogel, 
1998; Golberg, 1996; Bäck et al., 1997; Heitkotter 
and Beasley, 1998; Pérez, n.d.) a)Genetic 
Algorithms: A population of binary numbers or 
character strings evolve using a set of unitary and 
binary transformations and a selection process; 
b)Evolutionary Programs: A population of data 
structure evolve through a set of specific 
transformations and a process selection; 
c)Evolutionary Strategies: A population of real 
numbers is made evolve to find possible solutions 
of a numerical problem; d)Evolutionary 
Programming: The population is constituted by 
finite state machines which are subjected to unitary 
transformations; e)Genetic Programming: The 
population consists of programs which solve a 
specific problem. The objective is to make evolve 
the population in order to find the best program that 
solves the problem under study. The algorithm 
proposed in this paper, may be considered as an 
evolutionary strategy, since it is designed to solve 
parametric optimization problems, and it is based 
on some ideas presented in (Gao, 1999; Tang and 
Wang, 1997; Wang and Shen, 1999). 
 
 
3. SYSTEM IDENTIFICATION METHOD 
FOR DISCRETE TIME LINEAR SYSTEMS 
 
The ARX model structure may represent a wide 
variety of linear systems. For single input and 
single output (SISO) systems, the ARX model is 
represented by: 
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The variables y(k), u(k) and e(k) represent output, 
input and noise at time k, respectively. The system 
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order is n ≥ m and d is the dynamical system time 
delay. 
 
3.1 Chromosome Coding for Parameters 
Estimation 
The chromosome coding for a fixed ARX structure, 
is defined as a real values string containing the 
polynomials coeficients and the time delay 
corresponding to the ARX model. The chromosome 
structure, where each polynomial coeficient 
represents a chromosome gen, is illustrated in 
figure 1 
The proposed chromosome coding facilitates the 
calculation of model parameters for different 
system orders n and time delay d. Chromosomes 
lengths mainly depend on n . System order n, time 
delay d and the order of polynomial )( 1−qB ,m, are 
chosen taking into account their contribution to the 
fitness function associated to each set of 
chromosomes with fixed structure. 

 
 
Some parameters are required to create diferent sets 
of chromosomes: maximum system order nmax and 
maximum time delay dmax. All posible 
combinations will be considered to generate the sets 
of chromosomes with fixed structure, for example if 
nmax = 2 and dmax = 2, the diferent sets of 
chromosomes with fixed structure are illustrated 
in figure 2 

 
 
Without loss of generality, m has been considered 
to be, at most equal to n in order to generate the 
chromosomes lengths. Solutions associated to m < 
n are included in these sets of chromosomes and 
solutions for which an = 0 are discarded. 
 
4. EVOLUTIONARY ALGORITHM FOR 
PARAMETERS AND STRUCTURE 
ESTIMATION 
 
In this section an evolutionary algorithm for Linear 
Systems Identification is proposed. This approach 
allows parameter estimation and finding a suitable 
structure for an ARX model. The algorithm uses 
parametric crossover and parametric mutation 
according to results presented in (Gao, 1999; Tang 
and Wang, 1997; Wang and Shen, 1999). Consider 
the following non conventional index which may be 
used as fitness function for the proposed algorithm 
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where p is the number of data patterns, taken from 
the process under study over a time window [k-p+ 
1,k], which is long enough to be able to obtain 
crucial dynamics characteristics from the 
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inputoutput system data. This data is used to 
perform 
the ofline system identification procedure; where el 
is the error and del is the error derivative, 
corresponding to the lth data pattern. Notice that the 
following equation holds true  
 

)()()()()( 11 kekuqqBkyqA d =− −−−       )4(  
 
notice also that such fitness function h is afected by 
ai bj and d. According to the fitness function 
definition, h(ai; bi; d) must be maximized in order 
to minimize the estimation error. Therefore it is 
required to solve the following optimization 
problem 
 

)),,((; 21 dbahDDMax iidaibj ∈∈              )5(  
 
where D1 ⊂  R, and D2 ⊂  Z+ (polynomial 
coeficients are represented with finite real values 
and the time delay is represented by a finite positive 
integer).Taking into account equations 4 and 5, the 
proposed algorithm may be written as follows: 
 
Reproduction: Given the maximum system time 
delay and maximum dynamical system order, begin 
generating all posible sets of fixed structure for 
chromosomes. Then, start with an initial population 
of N individuals or chromosomes for each type of 
structure. Let xs(r) be the chromosome 
corresponding to the rth generation associated to the 
sth structure 
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where for reproduction stage r = 1 and 
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where )1(sζ  is an array and the first n+m elements 
constitute a random array with each element in  
(-1,1), selected to guarantee appropriate initial 
population values which improve the algorithm 
convergence. The last element value of )1(sx , as 
well as the length of the chromosome, are given by 
the sth generated structure. 
 
Fitness Function Evaluation: The fitness function is 
evaluated for every population of individuals 
corresponding to each structure. The individuals are 

sorted in a list, from the greatest fitness function 
value to the lowest, such that chromosomes with 
greater fitness function values go first. There will 
be one list for each structure.  
 
Parametric Crossover: Let )(rxi

s  be the 
chromosome corresponding to the ith position in 
the list associated to the structure sth, during the rth 

generation; i = 1..N, the n1 fitter individuals 
participate in the crossover operation. Let 

)(rxi
s and )(rx j

s  be two individuals, then the 
parametric crossover results in: 
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σ must be a very small positive number as 
compared to the magnitude order associated to 
individual elements. This operation is only 
achieved for the first n + m chromosome elements. 
The element corresponding to the time delay d is 
generated with the chromosome fixed structure in 
the reproduction stage. Next these operation parents 
and new individuals are sorted according to their 
fitness function from the greatest value to the 
lowest value. 
 
Parametric Mutation: The parametric mutation is 
achieved along a _tness function weighted gradient 
direction, based on the parametric mutation 
algorithm proposed in (Tang and Wang, 1997). 
This is the most important operator for the 
convergence of the proposed evolutionary 
algorithm. Additionally, it uses a penalty function 
for evaluating the solutions which violate the 
optimization problem constraints. According to the 
parametric algorithm proposed in (Tang and Wang, 
1997), constraints of type gj (x) ≤ 0, j = 1..J , may 
be imposed on the optimization problem. For this 
case, one constraint, associated to the error 
tolerance ETmax, may be imposed in order to 
accelerate the algorithm convergence J = 1. 
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All of N individuals are subjected to parametric 
mutation, according to the weighted gradient 
direction method which may be written as follows: 
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jρ  corresponds to a penalty multiplier associated 
to each constraint. For this case J=1, then 
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In general these multipliers may be defined as 
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where δ is a very small positive number. Let 

)(rxi
s corresponds to the ith position in the list 

associated to the structure sth, during the rth 
generation; i = 1..N then the parametric mutation  
operator may be expressed in the following way 
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β  must be a small positive number. A 
convergence proof, related to an evolutionary 
algorithm which uses only the parametric mutation 
method, may be found in (Tang and Wang, 1997). 
This operation is only achieved for the first n + m 
chromosome elements, the time delay d is 
generated with the fixed structure in the 
reproduction stage.  
 
Replacement: The least suitable individuals are 
replaced, with individuals that result from 
parametric crossover and/or parametric mutation 
processes, in order to keep constant the number N 
of population individuals.  
Selection: The fittest individual, corresponding to 
each fixed structure, is selected and the chosen ones 
are sorted according their fitness function from the 
greatest to the lowest value. The first individual in 

the final list corresponds to the best solution for the 
identification problem using ARXstructures. 
 
5. SIMULATION RESULTS 
 
The results presented in this section are associated 
to data from a Data Base for Systems Identification 
(DAISY), developed by SISTA: Signals, 
Identification, Systems Theory and Automation, 
which may be accessed from 
http://www.esat.kuleuven.ac.be/sista/daisy/. This 
Data Base provide data from di_erent kind of 
processes. It has been selected an Industrial Process 
(Ethane-Ethylene Distillation Column), to illustrate 
the potentials of the proposed evolutionary 
algorithm, with data corresponding to, Outputs: 
Bottom Ethylene Composition and Bottom-Top 
Differential Pressure; Input: Ratio between Reflux 
and Feed Flow. The results are presented with 
linearized data. 
 
Simulation 1 
Input:Ratio between Reux and Feed Flow 
Output:Bottom Ethylene Composition The Arx 
Model polynomials and dynamic delay calculated, 
with the proposed algorithm, giving as input 
parameters: maximum delay 10, maximum order: 4 
is the following: 
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Figures 3, 4 and 5 illustrate the real output vs. 
estimated output, residual analysis and zero-pole 
map respectively for the Arx model, calculated with 
the evolutionary algorithm. 
Simulation 2 
Input:Ratio between Reux and Feed Flow 
Output:Botton-Top Differential Pressure The Arx 
Model polynomials and dynamic delay calculated, 
with the proposed algorithm, giving as input 
parameters: maximum delay 10, maximum order: 4 
is the following: 
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Figures 6, 7and 8 illustrate the real output vs. 
estimated output, residual analysis and zero-pole 
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map respectively for the Arx model, calculated with 
the evolutionary algorithm. 
 

 
Fig. 3. Real Output Vs. Estimated Output (Bottom 
Ethylene  Composition) 
 

 
Fig. 4. Residuals Analysis Simulation 1 

 

 
Fig. 5. Zero Pole Map Simulation1 
 

 
Fig. 6. Real Output Vs. Estimated Output 

(Bottom-Top Differential Pressure) 
 

 
Fig. 7. Residuals Analysis Simulation 2 
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Fig. 8. Zero Pole Map Simulation 2 

 
 
 

6. CONCLUSION 
 
A new evolutionary algorithm for linear systems 
identification has been presented. The algorithm 
incorporates parametric crossover and parametric 
mutation along a weighted gradient direction. The 
evolutionary method proposed in this paper not 
only allows the parametric estimation process for a 
fixed model structure, with non conventional 
objective functions, but additionally, calculates an 
optimal system structure, while minimizing the 
time involved in the identification process 
validation step. The eficiency of the evolutionary 
method is illustrated by computer simulation 
results. 
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