

Código	FGA-23 v.03
Página	1 de 4

FACULTAD: CIENCIAS BÁSICAS

PROGRAMA: FÍSICA

DEPARTAMENTO DE: FÍSICA Y GEOLOGÍA

CURSO:	FÍSICA ESTADÍST	ICA CÓDIGO :	157220
ÁREA:	FÍSICA		
REQUISITOS:	TERMODINÁMICA	CORREQUISITO:	
CRÉDITOS:	4	TIPO DE CURSO:	
FECHA ÚLTIMA A	ACTUALIZACIÓN	18/06/ 2018	

JUSTIFICACIÓN

La física estadística es una rama de la física que estudia el comportamiento de una gran colección de objetos interactuantes, utilizando la teoría de probabilidad y la estadística. A la fecha sigue siendo un área de investigación altamente activa y con muchas preguntas abiertas. Para llevar a cabo su estudio, se toma como base el marco conceptual desarrollado en el curso de termodinámica, de esta manera, construyendo un puente entre la descripción macroscópica de un sistema y su descripción microscópica.

Tomando en cuenta la fortaleza en el manejo de herramientas computacionales del programa de física de la Universidad de Pamplona, finalizando este curso, el estudiante contará con las bases necesarias para incursionar, si es su interés, en temas avanzados de física estadística que actualmente están siendo ampliamente investigados.

OBJETIVO GENERAL

Enseñar las bases teóricas de la física estadística y mostrar cómo estas proporcionan el vínculo entre el mundo cuántico microscópico y el comportamiento de sistemas macroscópicos.

OBJETIVOS ESPECÍFICOS

- Dominar los métodos y conceptos estadísticos básicos, tales como la probabilidad, el valor promedio, la dispersión y distribuciones de probabilidad.
- Definir y discutir los conceptos de microestado y macroestado de un sistema.
- Definir y discutir los conceptos de entropía y energía libre a partir del punto de vista de la física estadística.

Código	FGA-23 v.03
Página	2 de 4

- Construir modelos para analizar sistemas simples en los ensambles microcanónico, canónico y grancanónico.
- Calcular las funciones de partición de cada ensamble estadístico y obtener analíticamente las funciones de estado termodinámicas en algunos casos específicos.
- Analizar la distinción entre las estadísticas de Fermi-Dirac, Bose-Einstein y Maxwell-Boltzmann, y el origen de estas diferencias.

COMPETENCIAS

Al concluir el curso, el estudiante estará en capacidad de:

- Describir e interpretar los conceptos fundamentales de la física estadística.
- Entender la conexión entre la mecánica estadística y la termodinámica.
- Discernir entre los diferentes ensambles estadísticos.
- Usar métodos estadísticos, tales como las distribuciones de Maxwell-Boltzmann, Fermi-Dirac y Bose-Einstein, para resolver problemas en algunos sistemas físicos.
- Desarrollar un pensamiento crítico y las habilidades apropiadas para resolver problemas físicos en el contexto de la física estadística.

UNIDAD 1: ELEMENTOS DE PROBABILIDAD Y ESTADÍSTICA

TEMA	HORAS DE CONTACTO DIRECTO	HORAS DE TRABAJO INDEPENDIENTE DEL ESTUDIANTE
Fluctuaciones en el equilibrio	2 horas	4 horas
Irreversibilidad y tendencia al equilibrio	2 horas	4 horas
Conjuntos estadísticos	2 horas	4 horas
Distribución binomial	2 horas	4 horas
Valores medios	2 horas	4 horas

UNIDAD 2: DESCRIPCIÓN ESTADÍSTICA DE LOS SISTEMAS DE PARTÍCULAS

TEMA	HORAS DE CONTACTO DIRECTO	HORAS DE TRABAJO INDEPENDIENTE DEL ESTUDIANTE
Especificación del estado de un sistema, ensamble estadístico y postulados estadísticos	2 horas	4 horas

Cálculos de probabilidad	2 horas	4 horas
Número de estados accesibles	2 horas	4 horas
Condiciones de equilibrio y ligaduras. Procesos reversibles e irreversibles	2 horas	4 horas
Interacción entre sistemas: interacción térmica e interacción mecánica. Procesos cuasiestáticos.	2 horas	4 horas

FGA-23 v.03

3 de 4

UNIDAD 3: MÉTODOS BÁSICOS DE LA MECÁNICA ESTADÍSTICA

TEMA	HORAS DE CONTACTO DIRECTO	HORAS DE TRABAJO INDEPENDIENTE DEL ESTUDIANTE
Sistemas aislados, sitema en contacto con un foco térmico, distribución canónica	2 horas	4 horas
Aplicaciones de la distribución canónica	2 horas	4 horas
Cálculo de valores medios. Función de partición	2 horas	4 horas
Ensamble microcanónico y gran canónico	2 horas	4 horas

UNIDAD 4: APLICACIONES SENCILLAS DE LA MECÁNICA ESTADÍSTICA

TEMA	HORAS DE CONTACTO DIRECTO	HORAS DE TRABAJO INDEPENDIENTE DEL ESTUDIANTE
Función de partición y sus propieades	2 horas	4 horas
Gas monoatómico ideal. El teorema de equipartición	2 horas	4 horas
Paramagnetismo	2 horas	4 horas
Condiciones de equilibrio	2 horas	4 horas

UNIDAD 5: MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

TEMA	HORAS DE CONTACTO DIRECTO	HORAS DE TRABAJO INDEPENDIENTE DEL ESTUDIANTE
Partículas idénticas y condiciones de simetría	2 horas	4 horas
Funciones de distribución cuánticas	2 horas	4 horas
Estadística de Maxwell-Boltzmann	2 horas	4 horas
Estadística de Bose-Einstein	2 horas	4 horas

Código	FGA-23 v.03
Página	4 de 4

Estadística de Fermi-Dirac	2 horas	4 horas
Estadística cuántica en el límite clásico	2 horas	4 horas

METODOLOGÍA (Debe evidenciarse el empleo de nuevas tecnologías de apoyo a la enseñanza y al aprendizaje)

Se sugiere al profesor utilizar las siguientes estrategias en el desarrollo del curso:

- Clases magistrales por parte del profesor.
- Asignación de lecturas previas a los estudiantes, relacionados con los temas que se desarrollarán en la siguiente clase, a fin de enriquecer y fortalecer la enseñanza de los mismos.
- Exposiciones por parte de los estudiantes.
- Talleres a fin de desarrollar destrezas en la resolución de problemas.
- Asesorías extra-clase a fin de reforzar los conocimientos adquiridos en el aula de clase.

SISTEMA DE EVALUACIÓN

El proceso de evaluación se realizará de acuerdo al reglamento Académico Estudiantil de Pregrado de la Universidad de Pamplona.

La evaluación académica debe ser un proceso continuo que busque no solo apreciar aptitudes, conocimientos y destrezas del estudiante frente a un determinado programa académico. Si no también teniendo en cuenta aspectos como: conocimientos, habilidades y valores. Las calificaciones de cada evaluación se realizarán según las condiciones establecidas en el reglamento académico vigente de la Universidad de Pamplona.

La evaluación debe propiciar en el estudiante la capacidad para: Interpretar la realidad, argumentar científicamente, proponer alternativas apropiadas a situaciones y problemas concretos de la realidad, elaborar un lenguaje científico especializado, fomentar el valor de la pregunta como base para el proceso de investigación.

Los exámenes que se realizaran de acuerdo al calendario académico establecido para el segundo semestre académico en el acuerdo 015 de 03 de mayo de 2005, dividido de la siguiente manera.

• Primer corte: 20% Examen escrito

15% Evaluación practica: talleres, quices

• Segundo corte: 20% Examen escrito

15% Evaluación practica: talleres, quices

• Examen final: 20% Examen escrito acumulativo

10% Proyecto de investigación

Código	FGA-23 v.03
Página	5 de 4

BIBLIOGRAFÍA DISPONIBLE EN UNIDAD DE RECURSOS BIBLIOGRÁFICOS DE LA UNIVERSIDAD DE PAMPLONA

- Reif F. *Física estadística*, *Berkeley physics course-volumen 5*, 1993. (Signatura topográfica: 530.13 R361f)
- L.D. Landau y E.M. Lifshitz. *Statistical Physics: Course of Theoretical Physics, Vol. 5*, 1980. (Signatura topográfica: 530.13 –L253f)

BIBLIOGRAFÍA COMPLEMENTARIA

- Reif F. Fundamentals of statistical and termal physics, McGraw-Hill, 1965.
- K. Huang. Statistical Mechanics, 1987.
- L.E. Reichl. A Modern Course in Statistical Physics, 1980.
- D. Chandler. *Introduction to Modern Statistical Mechanics*, 1987.

DIRECCIONES ELECTRÓNICAS DE APOYO AL CURSO

• https://ocw.mit.edu/courses/physics/8-044-statistical-physics-i-spring-2013/#

NOTA: EN CADA UNA DE LAS UNIDADES EL DOCENTE DEBERA PROPONER MÍNIMO UNA LECTURA EN LENGUA INGLESA Y SU MECANISMO DE CONTROL

Código	FGA-23 v.03
Página	6 de 4

UNIDAD No. 1

NOMBRE DE LA UNIDAD: ELEMENTOS DE PROBABILIDAD Y ESTADÍSTICA

COMPETENCIAS A DESARROLLAR

• Proporcionar una introducción a los conceptos matemáticos básicos de la teoría de probabilidad, los cuales forman la base para la comprensión de sistemas macroscópicos.

CONTENIDOS	ACTIVIDADES A DESARROLLAR POR EL PROFESOR	HORAS CONTACTO DIRECTO	ACTIVIDADES A DESARROLLAR POR EL ESTUDIANTE	HORAS TRABAJO INDEPENDIENTE	HORAS ACOMPAÑAMIENTO AL TRABAJO INDEPENDIENTE	ESTRATEGÍAS DE EVALUACIÓN QUE INCLUYA LA EVALUACIÓN DEL TRABAJO INDEPENDIENTE
Fluctuacion es en el equilibrio.			Revisión bibliográfica			Participación en clase
Irreversibilid ad y	Clase magistral		previa del tema			Quices
tendencia al equilibrio	Talleres	10 horas	Resolución de	20 horas	<u>10</u> horas	Talleres Lecturas en
Conjuntos	Asesorías extra-clase		ejercicios relacionados con los temas			inglés
estadísticos			desarrollados en clase			Parcial escrito
Valores medios			311 31313			

Código	FGA-23 v.03
Página	7 de 4

UNIDAD No. 2

NOMBRE DE LA UNIDAD: DESCRIPCIÓN ESTADÍSTICA DE LOS SISTEMAS DE PARTÍCULAS

COMPETENCIAS A DESARROLLAR

- Comprender los ingredientes esenciales para el estudio de un sistema compuesto de un gran número de partículas: especificación del estado del sistema, ensamble estadístico, postulados estadísticos y cálculos de probabilidad.
- Investigar los diferentes tipos de interacción que se pueden presentar entre sistemas macroscópicos, analizando el rol que juegan los parámetros externos en dichas interacciones.

CONTENIDOS	ACTIVIDADES A DESARROLLAR POR EL PROFESOR	HORAS CONTACTO DIRECTO	ACTIVIDADES A DESARROLLAR POR EL ESTUDIANTE	HORAS TRABAJO INDEPENDIENT E	HORAS ACOMPAÑAMIENTO AL TRABAJO INDEPENDIENTE	ESTRATEGÍAS DE EVALUACIÓN QUE INCLUYA LA EVALUACIÓN DEL TRABAJO INDEPENDIENT E
Especificaci ón del estado de un sistema, ensamble estadístico y postulados estadísticos Cálculos de probabilidad Número de estados accesibles Ligaduras, equilibrio e irreversibilid ad Interacción entre sistemas macroscópic os: Interacción térmica, interacción mecánica	Clase magistral Talleres Asesorías extra-clase	10 horas	Revisión bibliográfica previa del tema Resolución de ejercicios relacionados con los temas desarrollados en clase	20 horas	<u>10</u> horas	Participación en clase Quices Talleres Lecturas en inglés Parcial escrito

Código	FGA-23 v.03
Página	8 de 4

	•		

UNIDAD No. 3

NOMBRE DE LA UNIDAD: MÉTODOS BÁSICOS DE LA MECÁNICA ESTADÍSTICA

COMPETENCIAS A DESARROLLAR

- Establecer la distribución estadística que describe la interacción de sistemas en contacto con un reservorio de calor.
- Calcular cantidades macroscópicas, tales como la entropía, a partir de las propiedades microscópicas de un sistema.
- Estudiar el ensamble microcanónico, el cual describe un sistema aislado y el ensamble gran canónico, que describe un sistema abierto en contacto con un reservorio con el cual puede intercambiar calor y partículas.

CONTENIDOS	ACTIVIDADES A DESARROLLAR POR EL PROFESOR	HORAS CONTACTO DIRECTO	ACTIVIDADES A DESARROLLAR POR EL ESTUDIANTE	HORAS TRABAJO INDEPENDIENT E	HORAS ACOMPAÑAMIENTO AL TRABAJO INDEPENDIENTE	ESTRATEGÍAS DE EVALUACIÓN QUE INCLUYA LA EVALUACIÓN DEL TRABAJO INDEPENDIENT E
Sistemas aislados, sitema en contacto con un foco térmico, distribución canónica Aplicaciones de la distribución canónica Cálculo de valores medios. Función de partición Ensamble macrocanóni co y grancanónic o	Clase magistral Talleres Asesorías extra-clase	8 horas	Revisión bibliográfica previa del tema Resolución de ejercicios relacionados con los temas desarrollados en clase	16 horas	8 horas	Participación en clase Quices Talleres Lecturas en inglés Parcial escrito

Código	FGA-23 v.03
Página	9 de 4

UNIDAD No. 4

NOMBRE DE LA UNIDAD: APLICACIONES SENCILLAS DE LA MECÁNICA ESTADÍSTICA

COMPETENCIAS A DESARROLLAR

• Aplicar las ideas desarrolladas en la unidad 3 a diferentes situaciones físicas.

CONTENIDOS	ACTIVIDADES A DESARROLLAR POR EL PROFESOR	HORAS CONTACTO DIRECTO	ACTIVIDADES A DESARROLLAR POR EL ESTUDIANTE	HORAS TRABAJO INDEPENDIENT E	HORAS ACOMPAÑAMIENTO AL TRABAJO INDEPENDIENTE	DE EVALUACIÓN QUE INCLUYA LA EVALUACIÓN DEL TRABAJO INDEPENDIENT E
monoatómic o ideal. El teorema de equipartición	Clase nagistral Talleres Asesorías extra-clase	8 horas	Revisión bibliográfica previa del tema Resolución de ejercicios relacionados con los temas desarrollados en clase	16 horas	8 horas	Participación en clase Talleres Lecturas en inglés Exposicione s Parcial escrito

UNIDAD No. 5

NOMBRE DE LA UNIDAD: MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

COMPETENCIAS A DESARROLLAR

- Estudiar sistemas de partículas cuya interacción mutua es despreciable (gases ideales), adoptando un punto de vista completamente cuántico.
- Identificar las leyes que obedecen fermiones y bosones (estadística Fermi-Dirac y estadísitica de Bose-Einstein, respectivamente).
- Investigar bajo qué condiciones, las leyes de distribución cuánticas se reducen a la estadística clásica de Boltzmann.

Código	FGA-23 v.03
Página	10 de 4

CONTENIDOS	ACTIVIDADES A DESARROLLAR POR EL PROFESOR	HORAS CONTACTO DIRECTO	ACTIVIDADES A DESARROLLAR POR EL ESTUDIANTE	HORAS TRABAJO INDEPENDIENT E	HORAS ACOMPAÑAMIENTO AL TRABAJO INDEPENDIENTE	ESTRATEGÍAS DE EVALUACIÓN QUE INCLUYA LA EVALUACIÓN DEL TRABAJO INDEPENDIENT E
Partículas idénticas y condiciones de simetría Funciones de distribución cuánticas Estadística de Maxwell-Boltzmann Estadística de Bose-Einstein Estadística de Fermi-Dirac Estadística cuántica en el límite clásico	Clase magistral Talleres Asesorías extra-clase	12 horas	Revisión bibliográfica previa del tema Resolución de ejercicios relacionados con los temas desarrollados en clase Exposiciones orales	24 horas	12 horas	Participación en clase Quices Talleres Lecturas en inglés Parcial escrito